M.Math. IInd year Mid-semestral exam - IInd semester 2019 Algebraic Number Theory - B.Sury ANSWER ANY SIX INCLUDING QUESTION 7.

Q 1.

Let K be an algebraic number field.

(a) Prove that every $x \in K$ can be written as a/b with $a \in O_K$ and $b \in \mathbb{Z}$. (b) Show that each non-zero prime ideal of O_K contains a unique prime number.

OR

Prove that $P \neq P^2$ for any non-zero prime ideal.

Q 2.

Find all the ideals of $\mathbf{Z}[\sqrt{-6}]$ which contain 6. Which of these are prime ideals?

OR

In the ring $\mathbb{Z}[\sqrt{-5}]$, find with proof a positive integer *a* such that $(a, 1 + 2\sqrt{-5})(3, 1 + 2\sqrt{-5}) = (1 + 2\sqrt{-5})$.

Q 3.

(a) For fractional ideals I, J in a Dedekind domain A, prove that $I \supseteq J$ if and only if, IQ = J where Q is an ideal of A.

(b) Define an embedding of O_K as a lattice in \mathbb{R}^n where $[K : \mathbb{Q}] = n$. Compute the covolume of this lattice.

OR

(a) Determine with proof the sign of the discriminant of a number field.

(b) Let K be a cubic extension of **Q** such that $-49 \leq \text{disc}(K) < 0$. Use the Minkowski bound to deduce that K has class number 1.

Q 4.

Let $K = \mathbb{Q}(\zeta)$ be a cyclotomic field where ζ is a primitive N-th root of unity. If $N = p^k$ for an odd prime p and $k \ge 1$, determine the trace of ζ^{p^m} for any $m \le k$.

OR

Let $K = \mathbb{Q}(\zeta)$ where ζ is a primitive $2^n + 1$ -th root of unity and let $\Phi(X)$ denote the minimal polynomial of ζ over \mathbb{Q} . Consider the reduction $\overline{\Phi}(X)$ of $\Phi(X) \mod 2$. Determine the number of irreducible factors of the polynomial $\overline{\Phi}(X)$ and their degrees. You may assume the Kummer-Dedekind criterion.

Q 5.

Let α be a root of $f(X) = X^5 - X - 1$ and let $K = \mathbf{Q}(\alpha)$. Assume that the polynomial f is irreducible and the discriminant of K is 19×151 . Show that the ideal $(19, \alpha + 6)^2$ divides $19O_K$.

OR

For any Galois extension L/K of number fields and prime ideal P of \mathcal{O}_L , show that the decomposition group at P surjects onto the Galois group of the residue field extension.

Q 6.

(b) Prove that the class group of $\mathbb{Q}(\sqrt{-23})$ has order 3.

Q 7.

Describe an embedding of the unit group O_K^* in \mathbb{R}^{r+s} and show that its rank is at the most r + s - 1. Further, determine the fundamental unit of the cubic field $\mathbb{Q}(2^{1/3})$.

⁽a) Determine the class group of $\mathbb{Q}(\sqrt{6})$.